1. <track id="nlg2d"><div id="nlg2d"><td id="nlg2d"></td></div></track>
      2. <bdo id="nlg2d"><optgroup id="nlg2d"><thead id="nlg2d"></thead></optgroup></bdo>
      3. <tbody id="nlg2d"></tbody>
      4. <tbody id="nlg2d"><span id="nlg2d"><td id="nlg2d"></td></span></tbody>

        請幫忙找一個關于數學史的故事

        導讀:請幫忙找一個關于數學史的故事 數學典故及數學故事 數學歷史與典故 關于數學的小歷史

        高斯上數學課,老師出了一道,
        1+2+3+4+5+9+7+8+9+10+.....+100,要同學們算出。
        高斯沒動筆,他發現1+100=101,2+99=101,共有50個101,用50*101等于5050,高斯明白規律。
        因是他發明的就命為“高斯定理”。

        數學典故及數學故事

        鬼谷
        我國漢代有位大將,名叫韓信。他每次集合部隊,只要求部下先后按l~3、1~5、1~7報數,然后再報告一下各隊每次報數的余數,他就知道到了多少人。他的這種巧妙算法,人們稱為鬼谷算,也叫隔墻算,或稱為韓信點兵,外國人還稱它為“中國剩余定理”。到了明代,數學家程大位用詩歌概括了這一算法,他寫道:
        三人同行七十稀,五樹梅花廿一枝,
        七子團圓月正半,除百零五便得知。
        這首詩的意思是:用3除所得的余數乘上70,加上用5除所得余數乘以21,再加上用7除所得的余數乘上15,結果大于105就減去105的倍數,這樣就知道所求的數了。
        比如,一籃雞蛋,三個三個地數余1,五個五個地數余2,七個七個地數余3,籃子里有雞蛋一定是52個。算式是:
        1×70+2×21+3×15=157
        157-105=52(個)
        請你根據這一算法計算下面的題目。
        新華小學訂了若干張《中國少年報》,如果三張三張地數,余數為1張;五張五張地數,余數為2張;七張七張地數,余數為2張。新華小學訂了多少張《中國少年報》呢?

        數學歷史與典故

        八歲的高斯發現了數學定理
        德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。
        長大后他成為當代最杰出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為“數學王子”。
        他八歲時進入鄉村小學讀書。教數學的老師是一個從城里來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。
        這一天正是數學教師情緒低落的一天。同學們看到老師那抑郁的臉孔,心里畏縮起來,知道老師又會在今天捉這些學生處罰了。

        關于數學的小歷史

        數學是研究事物的數量關系和空間形式的一門科學。
        數學的產生和發展始終圍繞著數和形這兩個基本概念不斷地深化和演變。大體上說,凡是研究數和它的關系的部分,劃為代數學的范疇;凡是研究形和它的關系的部分,劃為幾何學的范疇。但同時數和形也是相互聯系的有機整體。
        數學是一門高度概括性的科學,具有自己的特征。抽象性是它的第一個特征;數學思維的正確性表現在邏輯的嚴密上,所以精確性是它的第二個特征;應用的廣泛性是它的第三個特征。
        一切科學、技術的發展都需要數學,這是因為數學的抽象,使外表完全不同的問題之間有了深刻的聯系。因此數學是自然科學中最基礎的學科,因此常被譽為科學的皇后。
        數學在提出問題和解答問題方面,已經形成了一門特殊的科學。在數學的發展史上,有 很多的例子可以說明,數學問題是數學發展的主要源泉。數學家門為了解答這些問題,要花費較大力量和時間。盡管還有一些問題仍然沒有得到解答,然而在這個過程中,他們創立了不少的新概念、新理論、新方法,這些才是數學中最有價值的東西。
        數學概論
        數學是研究現實世界中數量關系和空間形式的科學。簡單地說,就是研究數和形的科學。
        由于生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,并由用手指或實物計數發展到用數字計數。在中國,最遲在商代,即已出現用十進制數字表示大數的方法;至秦漢之際,即已出現完滿的十進位制。在 不晚于公元一世紀的《九章算術》中,已載了只有位值制才有可能進行的開平方、開立方的計算法則,并載有分數的各種運算以及解線性聯立方程組的方法,還引入了負數概念。
        劉徽在他注解的《九章算術》中,還提出過用十進制小數表示無理數平方根的奇零部分,但直至唐宋時期(歐洲則在16世紀斯蒂文以后)十進制小數才獲通用。在這本著作中,劉徽又用圓內接正多邊形的周長逼近圓周長,成為后世求圓周率 的一般方法。
        雖然中國從來沒有過無理數或實數的一般概念,但在實質上,那時中國已完成了實數系統的一切運算法則與方法,這不僅在應用上不可缺,也為數學初期教育所不可少。至于繼承了巴比倫埃及希臘文化的歐洲地區,則偏重于數的性質及這些性質間的邏輯關系的研究。
        早在歐幾里得的《幾何原本》中,即有素數的概念和素數個數無窮及整數惟一分解等論斷。古希臘發現了有非分數的數,即現稱的無理數。16世紀以來,由于解高次方程又出現了復數。在近代,數的概念更進一步抽象化,并依據數的不同運算規律,對一般的數系統進行了獨立的理論探討,形成數學中的若干不同分支。

        Hash:8081c3d1b6d154f4fb84051b7449c341b867c59a

        聲明:此文由 謝絕崇拜 分享發布,并不意味本站贊同其觀點,文章內容僅供參考。此文如侵犯到您的合法權益,請聯系我們 kefu@www.51kouyi.org

          
          
          1. <track id="nlg2d"><div id="nlg2d"><td id="nlg2d"></td></div></track>
          2. <bdo id="nlg2d"><optgroup id="nlg2d"><thead id="nlg2d"></thead></optgroup></bdo>
          3. <tbody id="nlg2d"></tbody>
          4. <tbody id="nlg2d"><span id="nlg2d"><td id="nlg2d"></td></span></tbody>

            91欧美激情一区二区三区成人